

Microservices for Daily Life

CS4471 Software Design and Architecture

Professor Nazim H. Madhavji

Department of Computer Science

Western University

Group 3

Le (Leon) Zhu

Colin Brown

Xiaolin (Eric) Wang

Kaiyi Hou

Zoe Kaute

 2

Table of Contents

Table of Contents ...Error! Bookmark not defined.

Introduction ... 3

Requirements ... 3

Registry Requirements ... 3

S-01 Requirements .. 3

S-02 Requirements .. 4

S-03 Requirements .. 5

S-04 Requirements .. 5

S-05 Requirements .. 6

Architecture and Design .. 7

Context Model ... 7

Overall System Architecture ... 8

Component Connector View .. 8

Implementation Details ... 9

Testing ... 10

Operational Evidence .. 10

Registry ... 10

S-01 .. 14

S-02 .. 18

S-03 .. 21

S-04 .. 25

S-05 .. 27

Appendix .. 30

References ... 31

 3

Introduction
This system comprises of a core Registry service which is designed to interface with a
flexible number of external microservices.

Requirements
Registry Requirements

Functional Requirements
• Display Microservices: Display a real-time list of all microservices currently

registered in the registry. The list must be dynamically updated to reflect the
addition, removal, or unavailability of services.

• Service Discovery: Ability to search through all the registered microservices for
service discovery.

• Service Management: Handles register, deregister, and heartbeat POST requests
from the microservices and provides information back to them about the request.

• Service Availability Monitoring: Monitor the availability of registered microservices
by tracking heartbeat signals. A microservice will be marked as unavailable if it fails
to send two consecutive heartbeats.

Quality Requirements
• Timely updates: The registry must frequently refresh the list of registered

microservices to ensure users and systems have access to accurate, up-to-date
information. Updates must account for new registration, deregistration, and
changes in service availability.

• Search Performance: The registry must process search queries quickly and reliably
to enable efficient service discovery.

ASRs
• Availability: Should always be available so that you can always tell if the

microservices are available or not. As a critical component of the system, the
registry’s downtime directly impacts the ability of microservices to function, making
availability critical for the overall architecture.

S-01 Requirements

Functional Requirements
• Site Explanation and Input Method: Clearly explain the purpose of the site and

provide a straightforward method for users to enter a stock symbol and submit their
request.

• Market Share Calculation: Calculate the market share of a stock by identifying its
market and determining the percentage of the market cap it represents.

 4

• Additional Stock Information: Return additional relevant information about the
stock, such as changes in its market share over time, to provide a comprehensive
overview.

• Display Processed Information: Display the calculated market share and additional
stock data accurately for the user.

• Registry Interaction: Be able to register and deregister with the service registry and
send periodic heartbeat signals to confirm the service's active status.

Quality Requirements
• Clear Interface: Present the returned stock data in a clear, visually appealing, and

informative manner for the user within a web browser.
• Intuitive: The purpose of the service is clear to the user when they first view the

website and not confusing.
• Fast Response: After sending a request, the server takes no more than 2 seconds for

the user to have the returned data.

ASRs
• Performance: Aim to return the stock data within 2 seconds of receiving a request.

Quick response times are critical for maintaining a positive user experience and
supporting real-time decision-making. Delays could frustrate users, reduce system
usability, and undermine trust in the service's efficiency.

S-02 Requirements

Functional Requirements
• Stock Symbol Input: Provide two text input forms for users to enter stock symbols,

with validation to notify users if the symbols are invalid or unrecognized.
• Stock Comparison: Service compares two stocks provided by the user, compare the

difference in their market cap, stock price, and profit margins.
• Input Validation: Service does not try to compare a stock that does not exist or

compare a stock before the user enters two symbols.
• Registry Interaction: Be able to register and deregister with the service registry and

send periodic heartbeat signals to confirm the service's active status.

Quality Requirements
• Responsive Design: Ensure the interface adapts attractively to various screen sizes

and device types, maintaining usability and visual appeal.
• Clear Information Formatting: Format the displayed information consistently,

grouping related data together and aligning it neatly, preferably on the same line for
easy comparison.

• Quick Comparisons: Present information in a way that allows users to identify which
stock is performing better at a glance.

 5

ASRs
• Usability: The service must have a responsive design that works seamlessly across

all platforms and device types. A responsive design ensures accessibility for a
diverse user base, enhancing user satisfaction and broadening the service's
usability.

• Usability: The service must present information in a way that is easy for users to
understand and interpret. Clear and intuitive information presentation reduces
cognitive load for users, enabling faster decision-making and improving the overall
user experience.

S-03 Requirements

Functional Requirements
• Emissions Calculation: Given two cities, output estimated Co2 emission values for

travelling between them by car, rail, or plane.
• City Pair Input: Accept city pairs in plaintext format (e.g., "City, Country") as input for

the calculation.
• Emission Reduction Suggestions: Provide users with actionable suggestions to

reduce emissions based on the specific city pair.
• Error Handling: Errors in city pairs or calculations are handled gracefully and

alternatives are found.
• Registry Interaction: Be able to register and deregister with the service registry and

send periodic heartbeat signals to confirm the service's active status.

Quality Requirements
• Efficient Calculations: Calculations are performed in under 5 seconds by the server.
• Outlier Handling: Automatically detect and address outliers in CO2 emission

estimates to ensure the accuracy and reliability of the output.

ASRs
• Performance: Perform all calculations within 2 seconds of receiving the input. Fast

calculations are essential for a smooth user experience, especially when users rely
on quick results for decision-making. A delay could discourage use and diminish the
perceived reliability of the service.

S-04 Requirements

Functional Requirements
• Daily Weather Summary: Provide a summary of the current day's weather for a given

city based on user input.
• City Input Format: Accept city names in the format "City, Country" for weather

lookup.

 6

• Clothing Suggestions: Given the summary of the daily weather, output a suggestion
for weather-appropriate clothing.

• Registry Interaction: Be able to register and deregister with the service registry and
send periodic heartbeat signals to confirm the service's active status.

Quality Requirements
• Weather Data Accuracy: Accuracy of the daily weather is not guaranteed as external

API will be used. However, outliers and errors will be addressed.
• Efficient Clothing Suggestions: The server will return clothing results in less than 5

seconds, including API wait time.
• Reliability: To guarantee reliability (99% when running), a rolling backup will be

implemented for common cities.

ASRs
• Performance: Deliver clothing suggestions based on weather data within 2 seconds

of receiving a valid input. Quick response times improve the overall user experience,
ensuring interactions with the service feel seamless and efficient. This makes the
service a dependable tool for daily planning while also encouraging users to rely on
it frequently.

S-05 Requirements

Functional Requirements
• Exercise Plan Generation: Given a set of preferences (e.g. muscle group), output a

plan of possible exercises to complete.
• User Profile Management: Enable users to view, save, delete, and create new

exercise plans, ensuring their preferences and actions are remembered.
• Plan Completion Tracking: Allow users to mark exercise plans as complete using a

simple flag to track their progress.
• Registry Interaction: Be able to register and deregister with the service registry and

send periodic heartbeat signals to confirm the service's active status.

Quality Requirements
• Efficient Plan Generation: Exercise plans are calculated in less than 1 second by the

server.
• Plan Accuracy: Output the plan with a 95% accuracy rate (inaccurate meaning

obvious errors with given exercise).
• Data Persistence: Save user profiles and exercise plans in a database to ensure

continuity across microservice reboots.

ASRs
• Usability: User data, including profiles and exercise plans, must persist across

microservice reboots. Fitness tracking relies on continuity, as users need consistent

 7

access to their saved exercise plans, progress, and preferences to effectively
manage their workouts. Data persistence is critical for maintaining a seamless user
experience, ensuring users do not lose progress or customizations due to system
restarts or updates.

Architecture and Design
Context Model

The registry is the central node as it is the most important. It will send microservice ids,
URLs, status’, and timestamps between it and the database to provide to the user and
update status based on heartbeats. The registry will send registered microservice info to
the user and POST request info to the microservices about the outcome of their requests
when they make requests with the registry. The microservices will send their ID, URL, and
status to the registry so it can register it and facilitate heartbeats. It will also provide some
function to the user. The user can send search requests to the registry and URLs of
registries to the microservice that they want to register or deregister from. Finally, AWS will
host all the software systems.

 8

Overall System Architecture

The module diagram is focused on the registry. In this way, the microservices are
interchangeable from the eyes of the registry.

The registry will have a function to handle the heartbeats it receives from the microservices
and update the microservice's availability accordingly. If it does not get a heartbeat from a
microservice for 35 seconds, it will list it as unavailable. It will also provide a function to
accept register and deregister requests from a microservice, updating its database and
sending acknowledgements to the microservice.

The microservice will have a function to send heartbeats to the registry. It will do this every
15 seconds and include information differentiating it from other microservices. It will also
implement a method to send register and deregister requests to the registry service over
HTTP. These methods should wait for a response and then update its own internal storage
accordingly. Finally, the microservice will provide some other function to the user that is to
do with its own individual specification.

The database will store the information of each registered microservice including a unique
id, name, address, status, and timestamp of the status for each microservice.

Component Connector View

The microservice will provide an interface to send data between it and the registry. This
interface will provide information about itself so that the registry can properly register,

 9

deregister, and know its availability status. It will also provide a website interface for the
user so they can use some function of it or have it register or deregister from a registry.

The registry will have two required interfaces. One for accepting information from a
microservice to handle the requests it makes and a second to query the MySQL database
that stores information about the registered microservices. It will also provide a website
interface so the user can see what microservices are registered, search through them, view
their status, and visit them if they choose.

The MySQL database will have a provided interface that the registry can use to query the
data in it.

Implementation Details
The registry was implemented using Node.js and a MySQL database.

The registry is hosted on an Amazon Web Services EC2 Instance at http://3.135.187.132/

The S-01 service was implemented using Node.js and the AlphaVantage API.

The S-01 service is hosted on an Amazon Web Services EC2 Instance at http://3.133.139.3/

The S-02 service was implemented using Node.js and the AlphaVantage API.

The S-02 service is hosted on an Amazon Web Services EC2 Instance at
http://18.190.176.152/

The S-03 service was implemented using Python Streamlit.

The S-03 service is hosted on an Amazon Web Services EC2 Instance. This is best as
Streamlit is always running and is more suited for a dedicated VM rather than serverless
compute.

The S-04 service was implemented using Vite, Typescript React, Postgres, and Express.js

The S-04 service is hosted on a Replit Autoscale cluster. This allows it to automatically
scale up according to demand. However, a dedicated VM is used as an alternative for cost
reasons.

The S-05 service was implemented using Vite, Typescript React, Postgres, and Express.js

http://3.135.187.132/
http://3.133.139.3/
http://18.190.176.152/

 10

The S-05 service is designed to be hosted on a Replit Autoscale cluster. This allows it to
automatically scale up according to demand. However, a dedicated VM is used as an
alternative for cost reasons.

Testing
The Quality Assurance for this system is composed of manual black-box tests. Each
component is run through a set number of scenarios.

As an example, we go through each combination of registration and deregistration for every
microservice and the registry. As we are doing it manually, we do Decision Table Testing
which has the least amount of test cases but the most amount of thought involved.

Operational Evidence
Registry

User is presented with the service registry page where different services are listed.
However, it is possible for none to be listed.

 11

The search functionality performs a substring match. ”m” would return all of the services
here as it is a substring of all of the strings. But ”moo” would not return any.

The output when the search matches none of the service IDs.

 12

Each service is clickable and will bring you to the external service’s IP.

 13

Removal of a service from the registry happens at the microservice side. There are logging
messages.

Updated registry with the S-02 service freshly removed.

 14

Console output shows S01 being deregistered and re-registered as well as a number of
received heartbeats

S-01

User is prompted to enter a ticket symbol

 15

Program outputs the details of the stock

 16

User can navigate to settings page to register/deregister.

Registration by inputting IP

 17

Registration. Alerts are given for success/errors.

 18

Successful deregistration from registry.

S-02

User lands on the homepage

 19

User enters two companies publicly traded in the United States (e.g. NYSE/NASDAQ).

The program outputs a comparison of the two companies’ financial statistics.

 20

The Settings page allows the user to enter in a registry URL in order to register the service
onto the registry.

The output is a success/error message for the registration. The user can also deregister
from a specific registry.

 21

An error or success message is the output for a deregistration.

S-03

User is able to enter a starting city and destination city.

 22

After entry, the output comprises details and visualizations of the journey.

The output also includes emissions details divided between different modes of transport.

 23

For longer journeys, it automatically discards unrealistic modes such as car.

 24

The registry settings page operates the same way, but for this service you can list the
service with a custom ID.

Registry View

 25

Deregistration works the same way, the user just has to input the correct service ID.

S-04

 26

The user is presented with landing page that asks for city.

Given a city, the program will output the current weather and some outfit
recommendations.

The registry connection page allows registration and deregistration of registry connections.

 27

S-05

Landing Page

 28

Landing Page

Login page

 29

User can create new workout plans by entering a name and body section. A new plan is
generated as output. Users can mark it as complete or delete the plan. These are all saved
in a Postgres Database bundled with the program.

Registry Connections are a feature.

 30

User can view all current connections to registries.

The user can also remove registry connections.

Appendix

Task Breakdown

 31

References
Bass, L., Clements, P., Kazman, R., & Klein, M. (2021). Software architecture in practice (4th
ed.). Addison-Wesley Professional.

